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Abstract. The generating function is obtained for N photocounts for a gaussian optical 
field with a lorentzian profile without any restriction to the intervals during which the 
photodetectors are open. The method may be generalized to arbitrary spectral profiles 
using the method of Srinivasan and Sukavanam. 

1. Introduction 

The statistical specification of an optical field requires the complete density matrix in 
the Fock space for the quantum optical case or the field ensemble density for the classical 
optical case. But the directly measured quantities in the optical case are neither the 
photon occupation numbers nor the intensities but photocounts. It is therefore of 
great interest to make a systematic analysis of photocount distributions. 

The analysis of photocount correlations of ‘fluctuating’ beams of light (ie statistical 
optical fields) has been presented recently by Dialetis (1969) as well as Jakeman (1970). 
Dialetis (1969) presents a method to obtain the explicit generating function of the N 
time photon counts. He assumes that all the counting is done in an interval T. The 
same holds in our discussion here but the present method can be extended to cover 
cases where the counting is not thus confined in time, whether the individual sample 
times are equal or unequal. Jakeman (1970) has analysed the problem for a mixture 
consisting of an incoherent gaussian component and a single frequency coherent beam 
and has obtained an explicit expression for the generating function of the double 
distribution corresponding to two disjoint and equal time intervals. In this paper we 
develop a method leading to the explicit determination of N time joint distribution 
of an incoherent beam corresponding to general intervals which may or may not overlap 
with one another. Cantrell (1971) has derived the N time generating function but his 
results correspond to cross-spectrally pure light while the counting times of the 
different detectors are required to be equal. Like Jakeman (1970) we discuss the counts 
on a single detector counting during N intervals. As such the discussion presented here 
does not demand cross-spectral purity and holds even for unequal counting times 
provided all of them fall within an interval T. Even when they do not, the treatment 
of the problem is a simple extension of the following discussion. 
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2. Photocount correlations for gaussian beams 

The generating function corresponding to the N fold probability density function of a 
gaussian field is given by 

Q(Sl,S2, ... S N )  = E exp -SiK [ ( i r ,  11 
where 

t i  + Ti 
fl = I, V*(t)V(t)di 

where V( t )  is the random complex field corresponding to the fluctuating analytic signal 
and the intervals ( t i ,  t i+  TJ ( i  = 1,2, ,  . . N )  are non-overlapping. The non-overlapping 
nature does not restrict the general problem of the determination of photocounts in 
overlapping intervals since the generating function can always be cast in the form (2.1) 
with a new choice of variables S I ,  S , ,  . . . SN. 

We next expand V( t )  into an orthonormal set of functions over the L, space corre- 
sponding to the intervals ( t i ,  ti + TJ. 

V ( t )  = c a,$&) 

where the normalization condition is 

c S i  fi” $,(t)$;(t) dt = hmn. 
ti 

The quantities { ai} are statistically independent and satisfy the relations 

(ai@) = (mi )h i j  

so that we have 

1 siM( = 1 1um12. 
m 

The autocorrelation of the complex V field is given by 

(v(t)v*(t’)> = (akaj*>$dt)4j*(t’). 
k J  

From equations (2.4) and (2.8) we find that 

(c Si f i ” i )  ( V(t)V*(t’))4,(tf)dt’ = (m,)$,(t) .  
t i  

Using the normalization of Jakeman and Pike (1968) 

( E )  (V*(t)V(t))  = - T 
T 

(2.10) 
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and the stationary nature of the V field 

( E )  (1) - t ’ )  (V(t)V*(t’)> = T g  ( t  

we obtain 

(1 Si l:+Ti) g(l)(t-t’)$l(t’) dt’ = Al(Sl, S 2 , .  . . S&jl(t). (2.11) 

The determination of the eigenvalues AI  is the main objective of the analysis. We can 
then obtain the generating function Q ( S ,  , S2 , .  . . S,) which is now given by 

However, we show that it is possible to obtain Q ( S ,  , S 2 , .  . . S,) directly by evaluating 
the infinite product given by the right-hand side of (2.12). 

3. Laplace transform solution of the eigenfunctions 

For notational convenience, we drop the suffix 1 from now on. Thus equation (2.11) 
can be written as 

(1 Si exp( - q t -  t‘l)$(t’)dt’ = A$(t)  

where we have allowed the autocorrelation function to correspond to a lorentzian 
profile of halfwidth r. Defining 

$&) = f i + T i  $(t)  e-pr dt 
t i  

and allowing t ,  < t 2 . .  . < r,, we obtain after some calculation 

Next we observe that $,(p) is an entire function in the complex p plane. However, the 
denominator [A(r2-p2)-2rSm] occurring in (3.2) has two zeros at p = + p m  where 

In order that $,(p) shall not possess any singularity in the finite part of the p plane, 
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A . . ,  IJ 
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’= biSj j < i  

= cisi j = i  

= 0 i < j < N + i  

= diSi j = N + i  

\= eisj-N j > N + i  

A Y = O  (3.5) 

(3.6) 

(3.7) 

and Y is a 2N dimensional vector with components 

$I( - l-1, $2( - r) 1 ’ . $N( - r), $l(n $m . . . $ N ( n  

detA = 0 (3.9) 

In order that (3.5) has a nontrivial solution, we must have 

an equation which determines the eigenvalues R of the Fredholm integral equation (2.1 1 ) .  
If we denote det A by F(l/A),  it is easy to see that F(I /R)  is not an entire function of its 
argument since it does not return to its original value if we go round any arbitrary 
closed contour containing the origin of the t (E l /R)  plane. However it is easy to see 
that F ( t )  is an analytic function of its argument in any bounded domain of the cut ( 
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plane. Thus it is easy to render F(<) entire by multiplying by an appropriate factor 
(see for example Srinivasan and Sukavanam 1972). For instance 

(3.10) 

is an entire function of 5 and its zeros are the eigenvalues of the basic integral equation 

We can obtain a representation of P(<) by using the Hadamard-Weierstrass theorem 
relating to the canonical representation of an entire function. Since the order of P([) 
is half, we easily obtain 

p(t) = F(t)/P1P2 * * P N  

(2.1 1). 

(3.11) 

where the constant P(0) is determined using the explicit relation (3.10). Comparing 
(3.1 1) with (2.12), we obtain 

(3.12) 

This completes the determination of Q ( S , ,  S 2 ,  . . . S,) for non-overlapping counting 
intervals. As for overlapping counting intervals, the explicit results can be obtained 
by making appropriate modifications as mentioned in the introduction. As long as 
the light is cross-spectrally pure the foregoing discussion covers even the case where 
N detectors are present. In this case, the cross-spectral purity implies that the field 
V(t )  'seen' by all the detectors is the same except for translation of the time variable. 
However, if there are N detectors and the light is not cross-spectrally pure, each of the 
detectors will 'see' a field v(t) ( i  = 1,. . . N).  Each &(t)  can be expanded in the interval 
(ti, ti+ in a manner similar to equation (2.3) and g"'(t - t') in equation (2.1 1) will be 
replaced in each interval (ti, ti+ TJ by g { ' ) ( t - t ' ) ,  the normalized autocorrelation for the 
ith detector. With this modification, the whole procedure can be repeated and the 
generating function obtained for this case. 

4. An example : the two-time distribution for gaussian-lorentzian light 

As an illustration of the method outlined above, we now discuss the case of two-time 
counting with a single gaussian-lorentzian beam of mean intensity I = (E) /T .  We 
take the two sampling times Tl and T2 to be unequal but assume that both the samples 
occur within the interval (0, T).  Also the sampling times are taken to be non-overlapping. 
The integral equation (3.1) now takes the form 

f i  + T i  t i  + TZ 
exp( - rlt - t'l)O((t) dt = ,lo(?') (4.1) I,, s1 il exp(-rlt-t ' l)~(t)dt+s, 

where 0 is related to $ of equation (3.1) through the relation 

@(t )  = d(t) exp(ioot), (4.2) 
oo being the centre frequency of the beam. Now t' can be either in the interval ( t l  , t + Tl) 
or in the interval ( tz  , t ,  + T2). Accordingly, we define two Laplace transforms 
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and 

$2(p) = f2”’ O(t) e-Pt dt. 
12 

(4.4) 

We take t ,  c t 2 .  First we proceed to derive an expression for q1(p). Taking the Laplace 
transform (as defined by (4.3)) of both sides of equation (4.1) we have 

t i  + T I  t i + T i  t i + T i  
e-Pf’  dt’ I, e-P“dt‘ 1, exp(-rlt-t’l)@(t)dt+s2 

12 + TZ 

i, 
x i2 exp( - rlt - t’l)O(t) dt = I$,(p) 

that is, 

t i + T i  t i  + Ti 

e-Pf’dt‘( lr exp[-T(t‘-t)]O(t)dt+ i, exp[ - r(t - t’)]O(t) dt 

12 + T2 

i, 
e-pt‘ dt‘ I, exp[ - I-(?- t‘)]@(t) dt = 

which leads to the equation 

Referring to equation (4.5), we note that the denominator of $,(p) has two zeros. Since 
we know q1(p) to be analytic in the finite part of p plane we demand that the numerator 
on the right-hand side of equation (4.5) also vanish at these zeros, given by + p l  = 

[r2 - ( 2 r / A ) ~ ~ ] ” ~ .  Exactly similar considerations apply to equation (4.6) and G 2 ( p ) ,  
the zeros this time being given by + p 2  = f [T2 - (2r / I )~~]”~ .  These requirements on 
the right-hand sides of equations (4.5) and (4.6) yield 

- + P 1) e x ~ [ ( r  - ~ ~ ) t ~ i $ ~ ( r )  - - P exp[ - + P 1)  ( t  + T,)I$ - r) 
+exP[(r-p,)tll(r+Pl){ - 1 + e x p [ ( ~ - p 1 ) ~ 1 l } s 2 ~ 2 ( ~ )  = 0 (4.7a) 
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(4.74 

Equations (4.7a)-(4.74 constitute a set of homogeneous equations in Gl(r), $1( - r), 
G2(T) and G2( - r) and nontrivial solutions will result only if the determinant of the 
coefficients vanishes. The equation of the determinant to zero gives the eigenvalue 
equation. However, we now take that determinant D(() (( = 1/A) and proceed to 
construct an entire function from it in order to achieve the generating function. We 
note that the determinant D(5) is given by 

(4.8) 
It can be observed that D ( < )  is not an entire function of < because it does not retain its 
original value if we go around any arbitrary closed contour containing the origin of the 
5 plane. This is due to the multiple valued nature of p1 and p 2 ,  the multiple-valued 
nature reflecting itself in the possible flipping of p1 to - p l ,  or p 2  to - p 2 ,  or both. We 
divide D(<) by p1p2 and obtain an entire function P(r)  of its argument : 

P ( 0  = m-)/PlPZ. (4.9) 

From equations (4.8) and (4.9) it is not difficult to show that P(0) and P( - I) are given by 

P(0) = - 16r2s:s; (4.10) 

P ( - I )  = -16r2s:s; exp[-T(T,+ T2)] 

+4s:s:(r2 -j:)(r2 -j$) exp[r(T, - T~)] exp[2r(tl - r2)] 

sinh f i2  T2 sinh B1 Tl 
X 

B2 B1 
(4.1 1)  
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where 

hl = (r2 + 2 r f ~ , ) ~ / ~  

j 2  = (r2 + 2 r l ~ , ) ~ / ~ .  

Whence, from equation (3.12) we get the generating function Q(sl, s,): 

exp[-T(T,+T,)] 

(4.12) 

This completes ihe derivation of the generating function for the two-time case for 
gaussian-lorentzian light. The probability distribution Anl, t l  , t l  + T, ; n, ,  t , ,  t ,  + T,) 
and the factorial moments (nyn?) are given by 

(4.14) 

a being the quantum sensitivity of the detector. We note that just as the single-time 
generating function can be experimentally measured at the point 1 (see Kelly and Blake 
1971), the generating function given by (4.12) can also be measured experimentally ,at 
s1 = 1, s2 = 1 ; this value is nothing but the probability that zero counts are registered 
during both the sample times ( t i ,  t l  + Tl) and ( t , ,  t 2  + T,). 

When the sample times Tl and T2 are both equal to T (say), we can dispense with 
the condition that they should fall within (0, T )  (as indeed we must!). This condition 
previously imposed is essentially a device to preserve the normalization of the eigen- 
functions 4 (or equivalently to see that the mean intensity of the beam is the same during 
different sample times). When Tl = T, = T the same normalization still holds but 
t l  and t 2  can occur at any times whatsoever. If we now take the two sample times as 
centred around z and 0 (z < 0) we recover the two-time generating function first derived 
by Jakeman (1970). This is obtained from equation (4.12) by putting t l  = T - ~ T ,  
t ,  = -+T and Tl = T, = T. The result is 

Q(sl, s2) = { e-2rT[ cosh hi T+ 1 r 81 1 l- $2 ( +F) sinh bl T ]  [cosh h2T+j  ( g+F) sinh #,TI 

1-L) ( ") sinh B1 Tsinh fi2T 4 p1 r &-F (4.15) 

When the intervals overlap, one can still retain the forms of equations (2.1) and (2.11) 
by defining new s's. All other calculations carry through. 
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The method outlined here can also be applied to a mixture of an incoherent gaussian 
beam and a coherent single-mode beam with minor modifications. For beams with 
nonlorentzian profiles, the techniques outlined here combined with the method used by 
Srinivasan and Sukavanam (1971) should yield the desired explicit expression for the 
generating function. 

Acknowledgments 

This work was supported by the Council of Scientific and Industrial Research, India. 

References 

Cantrell C D 1971 J. math. Phys. 12 1005-8 
Dialetis D 1969 J. Phys. A: Gen. Phys. 2 229-35 
Jakeman E 1970 J. Phys. A: Gen. Phys. 3 201-15 
Jakeman E and Pike E R 1968 J. Phys. A: Gen. Phys. 1 406-8 
Kelly H C and Blake J G 1971 J. Phys. A: Gen. Phys. 4 103 
Srinivasan S K and Sukavanam S 1971 Phys. Lett. 35A 81-2 
- 1972 J. Phys. A: Gen. Phys. 5 682-94 


